What is Claimed Is:

5

10

15

20

25

1. A low energy method of pyrolysis of hydrocarbon material comprising:

providing said hydrocarbon material;

loading said hydrocarbon material into a reaction chamber; adding a catalyst to said reaction chamber, and

heating said reaction chamber for a sufficient time to provide substantially complete pyrolysis,

said method occurring while maintaining a vacuum and yielding reaction products comprising a solid carbonaceous residue, a liquid hydrocarbon product and a combustible gas.

- 2. The method of Claim 1, wherein said catalyst is clay.
- 3. The method of Claim 2, wherein said clay is selected from the group consisting of montmorillonite, bentonite, beidillite and combinations thereof.
 - 4. The method of Claim 2, wherein said clay is pillared clay.
 - 5. The method of Claim 2, wherein said clay is a natural ore.
- 6. The method of Claim 1, wherein said catalyst is a commercial clay containing product.
- 7. The method of Claim 6, wherein said commercial clay product is selected from the group consisting of cat litter and oil spill absorbent and combinations thereof.
- 8. The method of Claim 2, wherein said catalyst is added in an amount of about 0.01 wt.% to 3.0 wt.%, based on the total weight of said hydrocarbon material.
- 9. The method of Claim 1, wherein said heating of said reaction chamber results in a reaction temperature of said hydrocarbon material of between about 150° to 850° F.
- 10. The method of Claim 1, wherein said reaction temperature of said hydrocarbon material is maintained at between about 350° to 850°F.

20

5

- 11. The method of Claim 1, wherein said heating occurs in at least a first, second and third phases and fuel input is adjusted to take advantage of the exothermic nature of the reaction.
- 12. The method of Claim 11, wherein said first, second and third phase occur sequentially over time.
- 13. The method of Claim 11, wherein said first, second and third phase occur sequentially over space, as said hydrocarbon material moves through said reaction chamber.
- 14. The method of Claim 1, wherein said vacuum is maintained at a pressure of between about 2 inches to 16 inches mercury.
 - 15. The method of Claim 11, wherein said vacuum is maintained at pressure of between about 2 inches to 16 inches mercury.
 - 16. A low energy method of pyrolysis of hydrocarbon material comprising:

providing said hydrocarbon material;

loading said hydrocarbon material into a reaction chamber:

heating said reaction chamber, said heating occurring in at least a first, a second and a third phase; and

- adjusting input of fuel to take advantage of the exothermic nature of the reaction, said method occurring while maintaining a vacuum and yielding reaction products comprising a carbonaceous solid residue, a liquid hydrocarbon product and a combustible gas.
 - 17. The method of Claim 16, wherein said phases occur sequentially over time.
- 25 18. The method of Claim 16, wherein said phases occur sequentially over space, as said hydrocarbon material moves through said reaction chamber.
 - 19. The method of Claim 16, wherein said vacuum is maintained at a pressure of between about 2 inches to 16 inches mercury.
- 30 20. The method of Claim 1, wherein said hydrocarbon material is used rubber.

15

5

- 21. The method of Claim 16, wherein said hydrocarbon material is used rubber.
- 22. An apparatus for reclamation and recovery of constituents of discarded vehicle tires and other hydrocarbon based materials including organic and inorganic materials for reuse or environmentally safe disposal, said apparatus comprising:
- a feed system for transferring rubber products and a catalyst into an inlet of a reactor;
- one or more elongated reactor chambers having activation,

 decomposition, and completion zones, wherein said one or more reactor chambers
 each have a helicoid auger for transferring material from the inlet through said reactor
 and solid product from said reactor to an outlet;
 - an inlet and an outlet bin positioned at each end of the reactor chambers for input, reaction initiation, product decomposition, reaction completion, and extraction of the into vapor and solid material; and
 - a solid material recovery system.
 - 23. An apparatus according to Claim 22, further comprising a vapor recovery system for recovering vapors from a decomposition zone of said one or reactor chambers, wherein said vapor recovery system comprises:
- a heat exchanger for condensing vapors from said one or more reactor chambers;
 - a liquid/gas separator for separating liquids condensed in said heat exchanger; and
- a vacuum pump for removing vapors from the decomposition chamber of said one or more low temperature reactor chambers through said heat exchanger and said liquid/gas separator, while maintaining a vacuum in said one or more low temperature reactor chambers.
 - 24. An apparatus of Claim 22, wherein the feed system is a helicoid auger.
- 30 25. An apparatus of Claim 22, wherein an outlet conveyor is a helicoid auger.

- 26. A process for reclamation and recovery of constituents of discarded vehicle tires and other rubber products cut into pieces for reuse or environmentally safe disposal, comprising:
 - transferring tire pieces from a feed supply by a conveyor into a feeder
- 5 bin; and
 - transferring the tire pieces from the feeder bin to the inlet of a low temperature reactor chamber by a helicoid auger.